Straight-lines modelling using planar information for monocular SLAM
نویسندگان
چکیده
This work proposes a SLAM (Simultaneous Localization And Mapping) solution based on an Extended Kalman Filter (EKF) in order to enable a robot to navigate along the environment using information from odometry and pre-existing lines on the floor. These lines are recognized by a Hough transform and are mapped into world measurements using a homography matrix. The prediction phase of the EKF is developed using an odometry model of the robot, and the updating makes use of the line parameters in Kalman equations without any intermediate stage for calculating the distance or the position. We show two experiments (indoor and outdoor) dealing with a real robot in order to validate the project.
منابع مشابه
Real-Time Monocular SLAM with Straight Lines
The use of line features in real-time visual tracking applications is commonplace when a prior map is available, but building the map while tracking in real-time is much more difficult. We describe how straight lines can be added to a monocular Extended Kalman Filter Simultaneous Mapping and Localisation (EKF SLAM) system in a manner that is both fast and which integrates easily with point feat...
متن کاملAppearance Based Extraction of Planar Structure in Monocular SLAM
This paper concerns the building of enhanced scene maps during real-time monocular SLAM. Specifically, we present a novel algorithm for detecting and estimating planar structure in a scene based on both geometric and appearance and information. We adopt a hypothesis testing framework, in which the validity of planar patches within a triangulation of the point based scene map are assessed agains...
متن کاملA new feature parametrization for monocular SLAM using line features
This paper presents a new monocular SLAM algorithm that uses straight lines extracted from images to represent the environment. A line is parametrized by two pairs of azimuth and elevation angles together with the two corresponding camera centres as anchors making the feature initialization relatively straightforward. There is no redundancy in the state vector as this is a minimal representatio...
متن کاملSLAM-Safe Planner: Preventing Monocular SLAM Failure using Reinforcement Learning
Automating Monocular SLAM is challenging as routine trajectory planning frameworks tend to fail primarily due to the inherent tendency of Monocular SLAM systems to break down or deviate largely from their actual trajectory and map states. The reasons for such breakages or large deviations in trajectory estimates are manyfold, ranging from degeneracies associated with planar scenes, with large c...
متن کاملLearning Effective Navigational Strategies for Active Monocular Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) refers to the problem of mapping an unknown environment that the robot is operating in and localizing itself in the unknown environment at the same time. Out of the various methods of performing SLAM, using a single monocular camera as the sole sensory input is highly preferred due to its simplicity and low power consumption. Range sensors such as la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 22 شماره
صفحات -
تاریخ انتشار 2012